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Figure 1. Teaser – Given five multi-view frames of different expressions, our approach generates a model capable of capturing the
fine-grained details of a novel expression beyond the resolution of the underlying face model [15] (top right corner). This is achieved
by blending the radiance fields computed for individual expressions, where the blending coefficients are modulated accordingly to local
volumetric changes. These volumetric changes are measured as the difference in the tetrahedral volume of a mesh that deforms with the
expression ( increase, decrease, and no change in volume). Such an approach allows BlendFields to render sharp, expression-dependent
details of the face without increasing the resolution of the mesh (bottom right corner).

Abstract
Generating faithful visualizations of human faces re-

quires capturing both coarse and fine-level details of the
face geometry and appearance. Existing methods are either
data-driven, requiring an extensive corpus of data not pub-
licly accessible to the research community, or fail to cap-
ture fine details because they rely on geometric face mod-
els that cannot represent fine-grained details in texture with
a mesh discretization and linear deformation designed to
model only a coarse face geometry. We introduce a method
that bridges this gap by drawing inspiration from tradi-
tional computer graphics techniques. Unseen expressions

†Work done during an internship at Microsoft Research Cambridge.
‡Work done at Simon Fraser University.

are modeled by blending appearance from a sparse set of
extreme poses. This blending is performed by measuring
local volumetric changes in those expressions and locally
reproducing their appearance whenever a similar expres-
sion is performed at test time. We show that our method
generalizes to unseen expressions, adding fine-grained ef-
fects on top of smooth volumetric deformations of a face,
and demonstrate how it generalizes beyond faces.

1. Introduction

Recent advances in neural rendering of 3D scenes [53]
offer 3D reconstructions of unprecedented quality [36] with
an ever-increasing degree of control [23, 29]. Human
faces are of particular interest to the research commu-
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NeRF [36] NeRFies [42] HyperNeRF [43] NeRFace [13] NHA [17] AVA [7] VolTeMorph [15] Ours

Applicability beyond faces ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓
Interpretable control ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓
Data efficiency ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓
Expression-dependent changes ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓
Generalizability to unknown expressions ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓

Table 1. Comparison – We compare several methods to our approach. Other methods fall short in data efficiency and applicability. For
example, AVA [7] requires 3.1 million training images while VolTeMorph [15] cannot model expression-dependent wrinkles realistically.

nity [1, 13–15] due to their application in creating realistic
digital doubles [32, 53, 75, 79].

To render facial expressions not observed during train-
ing, current solutions [1, 13–15] rely on parametric face
models [6]. These allow radiance fields [36] to be con-
trolled by facial parameters estimated by off-the-shelf face
trackers [27]. However, parametric models primarily cap-
ture smooth deformations and lead to digital doubles that
lack realism because fine-grained and expression-dependent
phenomena like wrinkles are not faithfully reproduced.

Authentic Volumetric Avatars (AVA) [7] overcomes this
issue by learning from a large multi-view dataset of syn-
chronized and calibrated images captured under controlled
lighting. Their dataset covers a series of dynamic facial
expressions and multiple subjects. However, this dataset
remains unavailable to the public and is expensive to re-
produce. Additionally, training models from such a large
amount of data requires significant compute resources. To
democratize digital face avatars, more efficient solutions in
terms of hardware, data, and compute are necessary.

We address the efficiency concerns by building on the
recent works in Neural Radiance Fields [15, 70, 74]. In
particular, we extend VolTeMorph [15] to render facial de-
tails learned from images of a sparse set of expressions.
To achieve this, we draw inspiration from blend-shape cor-
rectives [26], which are often used in computer graph-
ics as a data-driven way to correct potential mismatches
between a simplified model and the complex phenomena
it aims to represent. In our setting, this mismatch is
caused by the low-frequency deformations that the tetrahe-
dral mesh from VolTeMorph [15], designed for real-time
performance, can capture, and the high-frequency nature of
expression wrinkles.

We train multiple radiance fields, one for each of the K
sparse expressions present in the input data, and blend them
to correct the low-frequency estimate provided by VolTe-
Morph [15]; see Fig. 1. We call our method BlendFields
since it resembles the way blend shapes are employed in
3DMMs [6]. To keep K small (i.e., to maintain a few-shot
regime), we perform local blending to exploit the known
correlation between wrinkles and changes in local differen-
tial properties [21,45]. Using the dynamic geometry of [15],
local changes in differential properties can be easily ex-
tracted by analyzing the tetrahedral representation under-
lying the corrective blendfields of our model.

Contributions. We outline the main qualitative differences
between our approach and related works in Tab. 1, and our
empirical evaluations confirm these advantages. In sum-
mary, we:
• extend VolTeMorph [15] to enable modeling of high-

frequency information, such as expression wrinkles in a
few-shot setting;

• introduce correctives [6] to neural field representations
and activate them according to local deformations [45];

• make this topic more accessible with an alternative to
techniques that are data and compute-intensive [7];

• show that our model generalizes beyond facial modeling,
for example, in the modeling of wrinkles on a deformable
object made of rubber.

2. Related Works
Neural Radiance Fields (NeRF) [36] is a method for

generating 3D content from images taken with commod-
ity cameras. It has prompted many follow-up works [4,
5, 19, 33, 35, 42, 46, 48, 52, 55, 68, 76] and a major change
in the field for its photorealism. The main limitations of
NeRF are its rendering speed, being constrained to static
scenes, and lack of ways to control the scene. Rendering
speed has been successfully addressed by multiple follow-
up works [16, 18, 73]. Works solving the limitation to static
scenes [1, 2, 22, 40, 59, 61, 67, 78] and adding explicit con-
trol [8, 23, 24, 50, 57, 72, 74] have limited resolution or re-
quire large amounts of training data because they rely on
controllable coarse models of the scene (e.g., 3DMM face
model [6]) or a conditioning signal [43]. Methods built on
an explicit model are more accessible because they require
less training data but are limited by the model’s resolution.
Our technique finds a sweet spot between these two regimes
by using a limited amount of data to learn details missing
in the controlled model and combining them together. Our
experiments focus on faces because high-quality data and
3DMM face models are publicly available, which are the
key component for creating digital humans.

2.1. Radiance Fields

Volumetric representations [56] have grown in popu-
larity because they can represent complex geometries like
hair more accurately than mesh-based ones. Neural Radi-
ance Fields (NeRFs) [36] model a radiance volume with
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a coordinate-based MLP learned from posed images. The
MLP predicts density σ(x) and color c(x,v) for each point
x in the volume and view direction v of a given camera.
To supervise the radiance volume with the input images,
each image pixel is associated with a ray r(t) cast from the
camera center to the pixel, and samples along the ray are ac-
cumulated to determine the value of the image pixel C(r):

C(r) =

∫ tf

tn

T (t) σ(r(t)) c(r(t),v)dt, (1)

where tn and tf are near and far planes, and

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
, (2)

is the transmittance function [51]. The weights of the MLP
are optimized to minimize the mean squared reconstruction
error between the target pixel and the output pixel.Several
methods have shown that replacing the implicit functions
approximated with an MLP for a function discretized on
an explicit voxel grid results in a significant rendering and
training speed-up [16, 18, 28, 49, 73].

2.2. Animating Radiance Fields

Several works exist to animate the scene represented
as a NeRF. D-NeRF uses an implicit deformation model
that maps sample positions back to a canonical space [44],
but it cannot generalize to unseen deformations. Sev-
eral works [13, 42, 43, 54] additionally account for changes
in the observed scenes with a per-image latent code to
model changes in color as well as shape, but it is unclear
how to generalize the latents when animating a sequence
without input images. Similarly, works focusing on faces
[1, 13, 14, 80] use parameters of a face model to condition
NeRF’s MLP, or learn a latent space of images and geom-
etry [7, 30–32, 34, 58] that does not extrapolate beyond ex-
pressions seen during training.

In contrast to these approaches, we focus on using as
little temporal training data as possible (i.e. five frames)
while ensuring generalization. For this reason, we build our
method on top of VolTeMorph [15], that uses a paramet-
ric model of the face to track the deformation of points in
a volume around the face and builds a radiance field con-
trolled by the parameters of a 3DMM. After training, the
user can render an image for any expression of the face
model. However, the approach cannot generate expression-
dependent high-frequency details; see Fig. 1.

Similarly, NeRF-Editing [74] and NeRF Cages [70] pro-
pose to use tetrahedral meshes to deform a single-frame
NeRF reconstruction. The resolution of the rendered scenes
in these methods is limited by the resolution of the tetrahe-
dral cage, which is constrained to a few thousand elements.

We discuss additional concurrent works in
Supplementary.
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Figure 2. BlendFields – We implement our approach as a vol-
umetric model, where the appearance (i.e. radiance) is the sum
of the main appearance corrected by blending a small set of K
expression-specific appearances. These appearances are learnt
from extreme expressions, and then blended at test-time according
to blend weights computed as a function of the input expression e.

2.3. Tetrahedral Cages

To apply parametric mesh models, it is necessary to ex-
tend them to the volume to support the volumetric rep-
resentation of NeRF. Tetrahedral cages are a common
choice for their simplicity and ubiquity in computer graph-
ics [15, 70, 72]. For example, VolTeMorph uses dense land-
marks [63] to fit a parametric face model whose blend-
shapes have been extended to a tetrahedral cage with finite
elements method [9]. These cages can be quickly deformed
and raytraced [37] using parallel computation on GPUs [11]
while driving the volume into the target pose and allowing
early ray termination for fast rendering. We further leverage
the tetrahedral cage and use its differential properties [21],
such as a local volume change, to model high-frequency de-
tails. For example, a change from one expression to another
changes the volume of tetrahedra in regions where wrinkle
formation takes place while it remains unchanged in flat ar-
eas. We can use this change in volume to select which of
the trained NeRF expressions should be used for each tetra-
hedron to render high-frequency details.

3. Method
We introduce a volumetric model that can be driven by

input expressions and visualize it in in Fig. 2. We start
this section by explaining our model and how we train and
drive it with novel expressions utilizing parametric face
models (Sec. 3.1). We then discuss how to compute mea-
sures of volume expansion and compression in the tetra-
hedra to combine volumetric models of different expres-
sions (Sec. 3.2) and how we remove artifacts in out-of-
distribution settings (Sec. 3.3). We conclude this section
with implementation details (Sec. 3.4).

3.1. Our model

Given a neutral expression ē, and a collection of posed
images {Cc} of this expression from multiple views, VolTe-
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Morph [15] employs a map T to fetch the density and ra-
diance1 for a new expression e from the canonical frame
defined by expression ē:

c(x; e) = c̄(x̄), x̄ = T (x; e → ē) (3)
σ(x; e) = σ̄(x̄), x̄ = T (x; e → ē) (4)

Lrgb = EC∼{Cc} Er∼C Lr
rgb (5)

Lr
rgb = ∥C(r; e)− C(r)∥22, (6)

where C(r; e) is a pixel color produced by our model con-
ditioned on the input expression e, C(r) is the ground-truth
pixel color, and the mapping T is computed from smooth
deformations of a tetrahedral mesh to render unseen ex-
pressions e. We use expression vectors e from parametric
face models, such as FLAME [27, 65]. However, as nei-
ther density nor radiance change with e, changes in appear-
ance are limited to the low-frequency deformations that T
can express. For example, this model cannot capture high-
frequency dynamic features like expression wrinkles. We
overcome this limitation by conditioning radiance on ex-
pression. For this purpose, we assume radiance to be the
sum of a template radiance (i.e. rest pose appearance of a
subject) and K residual radiances (i.e. details belonging to
corresponding facial expressions):

c(x; e) = c̄(x) +

K∑

k=k

αk(x; e) · c̃k(x), (7)

We call our model blend fields, as it resembles the way in
which blending is employed in 3D morphable models [6]
or in wrinkle maps [41]. Note that we assume that pose-
dependent geometry can be effectively modeled as a con-
vex combination of colors [c̃(x)]Kk=1, since we employ the
same density fields as in (4). In what follows, for conve-
nience, we denote the vector field of blending coefficients
as α(x)=[αk(x)]

K
k=1.

Training the model We train our model by assuming that
we have access to a small set of K images {Ck} (example
in Fig. 3), each corresponding to an “extreme” expression
{ek}, and minimize the loss:

Lrgb = Ek Er ∥CK(r; ek)− Ck(r)∥22 (8)
where ∀x, α(x) = 1k, (9)

where 1k is the indicator vector, which has value one at the
k-th position and zeroes elsewhere, and CK represents the
output of integrating the radiances in (7) along a ray.
Driving the model To control our model given a novel ex-
pression e, we need to map the input expression code to the
corresponding blendfield α(x). We parameterize the blend
field as a vector field discretized on the vertices V(e) of

1We omit view-dependent effects to simplify notation but include them
in our implementation.

Figure 3. Data – We represent the data as a multi-view, multi-
expression images. For each of these images, we obtain parame-
ters of a parametric model, such as FLAME [27] to get: an expres-
sion vector e and a tetrahedral mesh described by vertices V(e).
We highlight that our approach works for any object if a rough
mesh and its descriptor are already provided.

our tetrahedral mesh, where the vertices deform according
to the given expression. The field is discretized on vertices,
but it can be queried within tetrahedra using linear FEM
bases [38]. Our core intuition is that when the (local) ge-
ometry of the mesh matches the local geometry in one of
the input expressions, the corresponding expression blend
weight should be locally activated. More formally, let v∈V
be a vertex in the tetrahedra and G(v) a local measure of
volume on the vertex described in Sec. 3.2, then

G(v(e))≈G(v(ek)) =⇒ α(v(e)) ≈ 1k. (10)

To achieve this we first define a local similarity measure:

[∆Gk(v(e))] = [∥G(v(e))−G(v(ek))∥22] ∈ RK (11)

and then gate it with softmax (with temperature τ=106) to
obtain vertex blend weights:

α(v(e)) = softmaxτ{∆Gk(v(e))} ∈ [0, 1]K (12)

which realizes (10), as well as preserves the typically desir-
able characteristics of blend weights:
• partition of unity: ∀x α(x) ∈ [0, 1]K and ∥α(x)∥1=1
• activations sparsity: minimizers of ∥α(x)∥0
where the former ensures any reconstructed result is a con-
vex combination of input data, and the latter prevents de-
structive interference [20].

3.2. Local geometry descriptor

Let us consider a tetrahedron as the matrix formed by
its vertices T={vi} ∈ R3×4, and its edge matrix as D =
[v3 − v0,v2 − v0,v1 − v0]. Let us denote D̄ as the edge
matrix in rest pose and D as one of the deformed tetrahedra
(i.e., due to expression). From classical FEM literature, we
can then compute the change in volume of the tetrahedra
from the determinant of its deformation gradient [21]:

∆V(T) = det(D · D̄−1) (13)

4



GT image No smoothing With smoothing

R
G

B
α
(x
)

space
(E

q.(12))
Figure 4. Laplacian smoothing – To combat artifacts stemming
from calculating weights α across multiple expressions, which
may assign different expressions to neighboring tetrahedra, we ap-
ply Laplacian smoothing [12]. As seen in the bottom row, smooth-
ing gives a more consistent expression assignment.

We then build a local volumetric descriptor for a specific
(deformed) vertex v(e) by concatenating the changes in
volumes of neighboring (deformed) tetrahedra:

G(v(e)) =
⊕

T∈N (v)

∆V(T(e)), (14)

where
⊕

denotes concatenation and N (v) topological
neighborhood of a vertex v.

3.3. Blend-field smoothness

High-frequency spatial changes in blendfields can cause
visual artifacts, see Fig. 4. We overcome this issue by apply-
ing a small amount of smoothing to the blendfield. Let us
denote with A={α(vv)} the matrix of blend fields defined
on all mesh vertices, and with L the Laplace-Beltrami op-
erator for the tetrahedral mesh induced by linear bases [21].
We exploit the fact that at test-time, the field is discretized
on the mesh vertices, execute a diffusion process on the
tetrahedral manifold, and, to avoid instability problems, im-
plement it via backward Euler [12]:

Adiff = (I− λdiffL)
−1An. (15)

3.4. Implementation details

We build on VolTeMorph [15] and use its volumetric
3DMM face model. However, the same methodology can
be used with other tetrahedral cages built on top of 3DMM

face models. The face model is created by extending the
blendshapes of the parametric 3DMM face model [65] to
a tetrahedral cage that defines the support in the neural ra-
diance field. It has four bones controlling global rotation,
the neck and the eyes with linear blend skinning, 224 ex-
pression blendshapes, and 256 identity blendshapes. Our
face radiance fields are thus controlled and posed with the
identity, expression, and pose parameters of the 3DMM face
model [65], can be estimated by a real-time face tracking
system like [64], and generalize convincingly to expressions
representable by the face model.
Training. During training, we sample rays from a sin-
gle frame to avoid out-of-memory issues when evaluating
the tetrahedral mesh for multiple frames. Each batch con-
tains 1024 rays. We sample Ncoarse=128 points along a sin-
gle ray during the coarse sampling and Nimportance=64 for
the importance sampling. We train the network to mini-
mize the loss in Eq. (8) and sparsity losses with standard
weights used in VolTeMorph [15,18]. We train the methods
for 5×105 steps using Adam [25] optimizer with learning
rate 5×10−4 decaying exponentially by factor of 0.1 ev-
ery 5×105 steps.
Inference. During inference, we leverage the underlying
mesh to sample points around tetrahedra hit by a single
ray. Therefore, we perform a single-stage sampling with
N=Ncoarse+Nimportance samples along the ray. When ex-
tracting the features (Eq. (14)), we consider |N (v)|=20
neighbors. For the Laplacian smoothing, we set λdiff=0.1
and perform a single iteration step. Geometric-related oper-
ations impose negligible computational overhead.

4. Experiments
We evaluate all methods on data of four subjects from

the publicly available Multiface dataset [66]. We track the
face for eight manually-selected ”extreme” expressions.
We then select K=5 expressions the combinations of
which show as many wrinkles as possible. Each subject
was captured with ≈38 cameras which gives ≈190 training
images per subject2. We use Peak Signal To Noise Ratio
(PSNR) [3], Structural Similarity Index (SSIM) [60] and
Learned Perceptual Image Patch Similarity (LPIPS) [77]
to measure the performance of the models. Each of the
rendered images has a resolution of 334×512 pixels.

As baselines, we use the following approaches: the orig-
inal, static NeRF [36], NeRF conditioned on an expres-
sion code concatenated with input points x, NeRFies [42],
HyperNeRF3 [43], and VolTeMorph [15]. We replace the
learnable code in NeRFies and HyperNeRF with the ex-
pression code e from the parametric model. Since VolTe-
Morph can be trained on multiple frames, which should

2To train BlendFields for a single subject we use ≈ 0.006% of the
dataset used by AVA [7].

3We use two architectures proposed by Park et al. [43].
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Figure 5. Novel expression synthesis – We compare qualitatively BlendFields with selected baselines (vertical) across two selected sub-
jects (horizontal). Firstly, we show a neutral pose of the subject and then any of the available expressions. To our surprise, VolTeMorphavg

trained on multiple frames renders some details but with much lower fidelity. We argue that VolTeMorpharg considers rendering wrinkles as
artifacts that depend on the view direction (see Equation (1)). VolTeMorph1 is limited to producing the wrinkles it was trained for. In con-
trast to those baselines, BlendFields captures the details and generalizes outside of the distribution. Please refer to the Supplementary
for animated sequences and results for other methods.

lead to averaging of the output colors, we split it into
two regimes: one trained on the most extreme expression4

(VolTeMorph1) and the another trained on all available ex-
pressions (VolTeMorphavg)5. We use both of these baselines
as VolTeMorph was originally designed for a single-frame
scenario. By using two versions, we show that it is not triv-
ial to extend it to multiple expressions.

4We manually select one frame that has the most visible wrinkles.
5We do not compare to NeRFace [13] and NHA [17] as VolTe-

Morph [15] performs better quantitatively than these methods.

4.1. Realistic Human Captures

Novel expression synthesis. We extract eight multi-view
frames from the Multiface dataset [66], each of a different
expression. Five of these expressions serve as training data,
and the rest are used for evaluation. After training, we can
extrapolate from the training expressions by modifying the
expression vector e. We use the remaining three expres-
sions: moving mouth left and right, and puffing cheeks, to
evaluate the capability of the models to reconstruct other
expressions. In Fig. 5 we show that BlendFields is the only
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Method

Real Data Synthetic Data

Casual Expressions Novel Pose Synthesis Novel Pose Synthesis

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeRF [36] 23.6465 0.7384 0.2209 25.6696 0.8127 0.1861 13.7210 0.6868 0.3113
Conditioned NeRF [36] 22.9106 0.7162 0.2029 24.7283 0.7927 0.1682 19.5971 0.8138 0.1545
NeRFies [42] 22.6571 0.7105 0.2271 24.8376 0.7990 0.1884 19.3042 0.8081 0.1591
HyperNeRF-AP [43] 22.6219 0.7087 0.2236 24.7119 0.7931 0.1848 19.3557 0.8132 0.1563
HyperNeRF-DS [43] 22.9299 0.7182 0.2241 24.9909 0.8007 0.1860 19.4637 0.8159 0.1526

VolTeMorph1 [15] 24.9939 0.8358 0.1164 26.7526 0.8749 0.0954 26.7033 0.9500 0.0394
VolTeMorphavg [15] 26.9209 0.8912 0.1105 28.6866 0.9176 0.0982 30.2107 0.9815 0.0387

BlendFields 27.5977 0.9056 0.0854 29.7372 0.9311 0.0782 32.7949 0.9882 0.0221

Table 2. Quantitative results – We compare BlendFields to other related approaches. We split the real data into two settings: one with
casual expressions of subjects and the other with novel, static expressions. For the real data, we only compute metrics on the face region,
which we separate using an off-the-shelf face segmentation network [62]. Please refer to the Supplementary for the results that include
the background in the metrics as well. We average results across frames and subjects. VolTeMorphavg [15] is trained on all frames, while
VolTeMorph1 is trained on a single frame. HyperNeRF-AP/-DS follows the design principles from Park et al. [43]. The best results are
colored in and second best results in . BlendFields performs best in most of the datasets and metrics. Please note that HyperNeRF-
AP/DS and NeRFies predict a dense deformation field designed for dense data. However, our input data consists of a few static frames
only where the deformation field leads to severe overfitting.

Parameter

Real Data Synthetic Data

Casual Expressions Novel Pose Synthesis Novel Pose Synthesis

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
|N (v)| = 1 27.5620 0.9043 0.0893 29.7269 0.9306 0.0815 32.2371 0.9882 0.0234
|N (v)| = 5 27.5880 0.9054 0.0864 29.7548 0.9312 0.0789 32.2900 0.9882 0.0231
|N (v)| = 10 27.5933 0.9054 0.0859 29.7456 0.9312 0.0785 32.3324 0.9882 0.0230
|N (v)| = 20 27.5977 0.9056 0.0854 29.7372 0.9311 0.0782 32.7949 0.9887 0.0221

Without smoothing 27.2535 0.8959 0.0939 29.3726 0.9233 0.0846 32.2452 0.9876 0.0238
With smoothing 27.5977 0.9056 0.0854 29.7372 0.9311 0.0782 32.7949 0.9887 0.0221

Table 3. Ablation study – First, we check the effect of the neighborhood size |N (v)| on the results. Below that, we compare the effect
of smoothing. The best results are colored in and the second best in . For the real dataset, changing the neighborhood size gives
inconsistent results, while smoothing improves the rendering quality. In the synthetic scenario, setting |N (v)|=20 and the Laplacian
smoothing consistently gives the best results. The discrepancy between real and synthetic datasets is caused by inaccurate face tracking for
the former. We describe this issue in detail in Section 4.4.

method capable of rendering convincing wrinkles dynami-
cally, depending on the input expression. BlendFields per-
forms favorably compared to the baselines (see Tab. 2).

Casual expressions. The Multiface dataset contains se-
quences where the subject follows a script of expressions
to show during the capture. Each of these captures con-
tains between 1000 and 2000 frames. This experiment
tests whether a model can interpolate between the train-
ing expressions smoothly and generalize beyond the train-
ing data. Quantitative results are shown in Tab. 2. Our
approach performs best all the settings. See animations in
the Supplementary for a comparison of rendered frames
across all methods.

4.2. Modeling Objects Beyond Faces

We show that our method can be applied beyond face
modeling. We prepare two datasets containing 96 views
per frame of bending and twisting cylinders made of a
rubber-like material (24 and 72 temporal frames, respec-
tively). When bent or twisted, the cylinders reveal pose-
dependent details. The expression vector e now encodes
time: 0 if the cylinder is in the canonical pose, 1 if it is
posed, and any values between [0, 1] for the transitioning
stage. We select expressions {0, 0.5, 1.0} as a training set
(for VolTeMorph1 we use 1.0 only). For evaluation, we take
every fourth frame from the full sequence using cameras
from the bottom and both sides of the object. We take the
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Figure 6. Qualitative results on synthetic dataset – For a
simple dataset, baselines cannot model high-frequency, pose-
dependent details. VolTeMorph1 renders wrinkles for the straight
pose as well, as it is trained for the twisted cylinder only, while
VolTeMorphavg averages out the texture.

mesh directly from Houdini [69], which we use for wrin-
kle simulation, and render the images in Blender [10]. We
show quantitative results in Tab. 2 for the bending cylinder,
and a comparison of the inferred images in Fig. 6 for the
twisted one6. BlendFields accurately captures the transi-
tion from the rest configuration to the deformed state of the
cylinder, rendering high-frequency details where required.
All other approaches struggle with interpolation between
states. VolTeMorph1 (trained on a single extreme pose) ren-
ders wrinkles even when the cylinder is not twisted.

4.3. Ablations

We check how the neighborhood size |N (v)| and the
application of the smoothing influence the performance of
our method. We show the results in Tab. 3. BlendFields
works best in most cases when considering a relatively
wide neighborhood for the tetrahedral features7. Lapla-
cian smoothing consistently improves the quality across all
the datasets (see Fig. 4). We additionally present in the
Supplementary how the number of expressions used for
training affects the results.

4.4. Failure Cases

While BlendFields offers significant advantages for ren-
dering realistic and dynamic high-frequency details, it falls
short in some scenarios (see Fig. 7). One of the issues arises

6Our motivation is that it is easier to show pose-dependent deforma-
tions on twisting as it affects the object globally, while the bending cannot
be modeled by all the baselines due to the non-stationary effects.

7Larger neighborhood sizes caused out-of-memory errors on our
NVIDIA 2080Ti GPU.

Low contrast Inaccurate off-the-shelf tracker

Figure 7. Failure cases – We show failure cases for our proposed
approach. Left: In the presence of wrinkles in low-contrast im-
ages, BlendFields takes longer to converge to make wrinkles vis-
ible. We show the ground truth on the top, and rendering after
training 7×105 steps on the bottom. In contrast, we rendered im-
ages in Figure 6 after 2×105 steps. Right: BlendFields inherits
issues from VolTeMorph [15], which relies on the initial fit of the
face mesh. If the fit is inaccurate, artifacts appear in the final ren-
der.

when the contrast between wrinkles and the subject’s skin
color is low. In those instances, we observe a much longer
time to convergence. Moreover, as we build BlendFields on
VolTeMorph, we also inherit some of its problems. Namely,
the method heavily relies on the initial fit of the parametric
model – any inaccuracy leads to ghosting artifacts or details
on the face that jump between frames.

5. Conclusions

We present a general approach, BlendFields, for ren-
dering high-frequency expression-dependent details using
NeRFs. BlendFields draws inspiration from classical com-
puter graphics by blending expressions from the training
data to render expressions unseen during training. We show
that BlendFields renders images in a controllable and inter-
pretable manner for novel expressions and can be applied
to render human avatars learned from publicly available
datasets. We additionally discuss the potential misuse of
our work in the Supplementary.
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BlendFields: Few-Shot Example-Driven Facial Modeling

Supplementary Material

A. Potential social impact
Our motivation for this work was to enable the creation

of 3D avatars that could be used as communication devices
in the remote working era. As our approach stems from
blendshapes [26], these avatars are easily adjustable via tex-
ture coloring and may be used for entertainment. We note,
however, that the potential misuse of our work includes us-
ing it as deep fakes. We highly discourage such usage. One
of our future directions includes detecting fake images gen-
erated by our method. At the same time, we highlight the
importance of BlendFields—in the presence of closed tech-
nologies [7, 32], it is crucial to democratize techniques for
personalized avatar creation. We achieve that by limiting
the required data volume to train a single model. As history
shows, when given an open, readily available technology for
generative modeling of images [47], users can scrutinize it
with unprecedented thoroughness, thus raising the general
awareness of potential misuses.

B. Concurrent Works
Gao et al. [14] and Xu et al. [71] also use an interpolation

between known expressions to combine multiple neural ra-
diance fields trained for those expressions. However, their
approach interpolates between grids of latent vectors [39]
globally. The interpolation weights are taken from blend-
shape coefficients.

Zielonka et al. [81] use a parametric head model to
canonicalize 3D points similarly to our ends. However, in-
stead of building a tetrahedral cage around the head, they
smoothly assign each face triangle to 3D points. Then
they canonicalize points using transformations that each
of the assigned triangles undergoes for a given expression.
They concatenate 3D points with the expression code from
FLAME [27] to model expression-dependent effects.

C. Additional results
C.1. Ablating number of expressions

We ablate over the number of used expressions during
the training. To evaluate the effect of the number of ex-
pressions, we add consecutive frames to the training set
(starting from a single, neutral one), i.e., the training set
has k<K expressions. We train BlendFields for such a set
for each subject separately. We then average the results for
a given k across subjects. We present the results in Tab. 4.
When selecting the training expressions, we aim to choose
those that show all wrinkles when combined. We can see
from Fig. 9 that if removed, e.g., the expressions with eye-

# expr.
Casual Expressions Novel Pose Synthesis

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
K=1 27.5834 0.9028 0.0834 28.7589 0.9147 0.0806
K=2 27.6783 0.9026 0.0856 29.2859 0.9186 0.0803
K=3 27.9137 0.9054 0.0819 29.8551 0.9279 0.0728
K=4 27.8140 0.9055 0.0815 30.1543 0.9336 0.0701
K=5 28.0254 0.9110 0.0778 30.4721 0.9372 0.0688

K=6 28.0517 0.9091 0.0813 – – –
K=7 28.2004 0.9115 0.0823 – – –
K=8 28.2542 0.9124 0.0830 – – –

Table 4. Number of training expressions – We ablate over the
number of training expressions. We evaluate the model on the
captures from the Multiface dataset [66]. We run the model for
each possible expression combination for a given K and average
the results. The best results are colored in and the second best
in . Increasing the number of available training expressions con-
sistently improves the results. However, using K=5 expressions
saturates the quality and using K>5 brings diminishing improve-
ments. We do not report “Novel Pose Synthesis” for K>5 as we
use validation expressions and poses to train those models (refer
to Sec. 4.1 for more details).

Figure 8. Training frames – In Sec. 4, we show results for the
BlendFields trained on K=5 expressions. The images represent
these expressions for one of the subjects. For each subject, we
selected similar expressions to show all possible wrinkles when
combined. Please note that we also include a “neutral” expression
(the first from the left)—it is necessary to enable the learning of a
face without any wrinkles.

brows raised, then the model cannot render wrinkles on the
forehead. In summary, increasing the number of expres-
sions improves the quality results with diminishing returns
when K>5, while K=5 provides a sufficient trade-off be-
tween the data capture cost and the quality.

C.2. Training frames

We present in Fig. 8 example training frames for one of
the subjects. Each frame is a multi-view frame captured
with ≈35 cameras (the number of available cameras varied
slightly between subjects).

C.3. Quantitative results with background

We compare BlendFields and the baselines similarly
to Sec. 4.1. However, in this experiment, we deliberately
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Method
Casual Expressions Novel Pose Synthesis

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeRF [36] 22.0060 0.6556 0.3222 23.8077 0.7448 0.2779
Conditioned NeRF [36] 21.0846 0.6280 0.3042 22.9991 0.7261 0.2362
NeRFies [42] 20.7004 0.6076 0.3579 23.0123 0.7253 0.2840
HyperNeRF-AP [43] 20.8105 0.6214 0.3504 22.8193 0.7185 0.2689
HyperNeRF-DS [43] 20.8847 0.6111 0.3656 23.0075 0.7259 0.2729

VolTeMorph1 [15] 21.3265 0.7091 0.2706 22.3007 0.7795 0.2281
VolTeMorphavg [15] 22.0759 0.7755 0.2615 23.8974 0.8458 0.2302

BlendFields 22.8982 0.7954 0.2256 24.4432 0.8477 0.2052

Table 5. Quantitative results without masking – Similarly to
Tab. 2, we compare BlendFields to other related approaches. How-
ever, we calculate the results over the whole image space, with-
out removing the background. BlendFields and VolTeMorph [15]
model the background as a separate NeRF-based [36] network.
The points that do not fall into the tetrahedral mesh are assigned to
the background. As the network overfits to sparse training views,
it poorly extrapolates to novel expressions (as the new head pose
or expression may reveal some unknown parts of the background)
and views. At the same time, all other baselines do not have any
mechanism to disambiguate the background and the foreground.

include the background in metric calculation. We show
the results in Tab. 5. In all the cases, BlendFields per-
forms best even though the method was not designed to
model the background accurately. Additionally, as Hyper-
NeRF [43], NeRFies [42], and NeRF [36] do not have any
mechanism to disambiguate between the foreground and the
background, the metrics are significantly worse when in-
cluding the latter.

C.4. Additional qualitative results

We show in Fig. 10 results of baselines that do not rely
on parametric models of the face [27]. Compared to Blend-
Fields, they cannot render high-fidelity faces. The issue
comes from the assumed data sparsity—those approaches
rely on the interpolation in the training data. As we assume
access to just a few frames, there is no continuity in the
training data that would guide them to interpolate between
known expressions. BlendFields presents superior results
given novel expressions even with such a sparse dataset. See
the attached video and index.html file for more qualita-
tive results.
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Figure 9. Qualitative ablation over the number of training expressions – We show qualitatively how the number of training expressions
K affects the rendering quality. The first row shows the ground truth images. All other consecutive rows show the images rendered with
BlendFields while increasing the number of training expressions. The last row, K=5 corresponds to the results presented in the main
part of the article. The subject’s naming follows the convention introduced in the Multiface repository [66]. Please refer to Tab. 4 for
quantitative results.
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Ground Truth BlendFields NeRF NeRF+expr NeRFies HyperNeRF-AP HyperNeRF-DS
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Figure 10. Comparison to strictly data-driven approaches – We compare BlendFields to other baselines that do not rely on mesh-driven
rendering: NeRF [36], NeRF conditioned on the expression code (NeRF+expr) [36], NeRFies [42], and HyperNeRF-AP/DS [43]. As a
static model, NeRF converges to an average face from available (K=5) expressions. All other baselines exhibit severe artifacts compared
to BlendFields. Those baselines rely on the data continuity in the training set (e.g., from a video), and cannot generalize to any other
expression. Please see the supplemented video for the animations.
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